Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes.
نویسندگان
چکیده
AIMS Cannabidiol (CBD), one of the major constituents in marijuana, has been shown to be extensively metabolized by experimental animals and humans. However, human hepatic enzymes responsible for the CBD metabolism remain to be elucidated. In this study, we examined in vitro metabolism of CBD with human liver microsomes (HLMs) to clarify cytochrome P450 (CYP) isoforms involved in the CBD oxidations. MAIN METHODS Oxidations of CBD in HLMs and recombinant human CYP enzymes were analyzed by gas chromatography/mass spectrometry. KEY FINDINGS CBD was metabolized by pooled HLMs to eight monohydroxylated metabolites (6α-OH-, 6β-OH-, 7-OH-, 1″-OH-, 2″-OH-, 3″-OH-, 4″-OH-, and 5″-OH-CBDs). Among these metabolites, 6α-OH-, 6β-OH-, 7-OH-, and 4″-OH-CBDs were the major ones as estimated from the relative abundance of m/z 478, which was a predominant fragment ion of trimethylsilyl derivatives of the metabolites. Seven of 14 recombinant human CYP enzymes examined (CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) were capable of metabolizing CBD. The correlations between CYP isoform-specific activities and CBD oxidative activities in 16 individual HLMs indicated that 6β-OH- and 4″-OH-CBDs were mainly formed by CYP3A4, which was supported by inhibition studies using ketoconazole and an anti-CYP3A4 antibody. The correlation and inhibition studies also showed that CBD 6α-hydroxylation was mainly catalyzed by CYP3A4 and CYP2C19, whereas CBD 7-hydroxylation was predominantly catalyzed by CYP2C19. SIGNIFICANCE This study indicated that CBD was extensively metabolized by HLMs. These results suggest that CYP3A4 and CYP2C19 may be major isoforms responsible for 6α-, 6β-, 7-, and/or 4″-hydroxylations of CBD in HLMs.
منابع مشابه
In vitro identification of the P450 enzymes responsible for the metabolism of ropinirole.
The in vitro metabolism of ropinirole was investigated with the aim of identifying the cytochrome P450 enzymes responsible for its biotransformation. The pathways of metabolism after incubation of ropinirole with human liver microsomes were N-despropylation and hydroxylation. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to each pathway. A high affinity compo...
متن کاملIn vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(-)-carvedilol.
Both the R(+) and the S(-) enantiomers of carvedilol were metabolized in human liver microsomes primarily to 4'- (4OHC) and 5'-(5OHC) hydroxyphenyl, 8-hydroxy carbazolyl (8OHC) and O-desmethyl (ODMC) derivatives. The S(-) enantiomer was metabolized faster than the R(+) enantiomer although the same P450 enzymes seemed to be involved in each case. A combination of multivariate correlation analysi...
متن کاملIdentification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.
Voriconazole is a triazole antifungal agent with potent activity against a broad spectrum of clinically significant pathogens. In vivo and in vitro studies have demonstrated that voriconazole is extensively metabolized, with the major circulating metabolite resulting from N-oxidation. In the present study, we report on the human cytochrome P450 enzymes responsible for the generation of this met...
متن کاملIdentification of the human and rat P450 enzymes responsible for the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-ME). The terminal step in the bioactivation of disulfiram.
The present study investigated the role of rat and human cytochrome P450 enzymes in the sulfoxidation of S-methyl N,N-diethylthiolcarbamate (DETC-Me) to S-methyl N,N-diathylthiolcarbamate sulfoxide (DETC-Me sulfoxide), the putative active metabolite of disulfiram. DETC-Me sulfoxidation by microsomes from male and female rats treated with various cytochrome P450-enzyme inducers suggested that mu...
متن کاملIdentification of cytochrome P-450 isoform(s) responsible for the metabolism of pimobendan in human liver microsomes.
Pimobendan, 4, 5-dihydro-6-(2-(4-methoxyphenyl)-1H-benzimidazol-5-yl)-5-methyl-3( 2-H )-pyridazinone, is a new inotropic drug that augments Ca(2+) sensitivity and inhibits phosphodiesterase in cardiomyocytes. Pimobendan is well absorbed after oral administration and is metabolized in the liver to the O-demethyl metabolite, which is also active. This study was conducted to identify the cytochrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Life sciences
دوره 89 5-6 شماره
صفحات -
تاریخ انتشار 2011